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Introduction

There are perplexing puzzles in HBT measurements.

e Relatively small changes of the extracted longitudinal and trans-

verse radii as a function of collision energies

1 Rout/Rside ~ 1

K. Adcox et al., Phys. Rev

T - =
6k x =
e ; =
«c LE e PHENIX X p 3
= ASTAR i s 3
35 - NA44 % =
2~ WAO8 =
1E= * E866 =
= <E895 . =
t 7%_: 5 4 é I :é
“:;_:g_ r x %TX E
< NS
3 ¢
2E- =
= E
e -
= 8E- -
E = =
o B =
S 5= =
T 4 =
3= =
25 =
15 E
0 0:1 0:2 0:3 0:4 0:5 0:6 0.7
k; (GeV/c)

. 88, 192302 (2002)

Pb-Pb or Au-Au

Central Collisions

PHENIX (130 GeV)
STAR (130 GeV)
NA4L  (17.3 GeV)
WAOS  (17.3 GeV)
F895 (4.1 GeV)
E866 (4.9 GeV)



Re-examination of HBT conditions

source

detectors

P(kiks) = P(k1)P(k2) (1 + R(k1ks))

HBT correlation depends on source property

e No HBT correlations (R(k1ks) = 0), if the source is

coherent

e Presence of HBT correlations (R(k1ks) # 0 ), if the

)

source 1s chaotic
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e No HBT correlations (R(k1k2) = 0), if the source is

coherent (phase ¢g(kx) is a simple function of x)

e Presence of HBT correlations (R(k1ks) # 0 ), if the

)

source is chaotic (¢g(kx) is random and fluctuating)



Coherent, source
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detectors
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No HBT correlation (R(k1ke) = 0) if the phase ¢g(kx)

is a simple functions of z:
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Chaotic source

source

detectors

For a chaotic source, ¢o(kz) is random and fluctuating,
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R(k1ks) depends on the cross term of |1)15|* which contains the phase

difference between the two histories
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Conventional HBT Assumptions in Heavy-Ion Collisions

source

e As the detected particles traverse from the source
point to the freeze-out point, they collide with

medium particles.

e As a result of these random collisions with medium
particles, the initial source will evolve into a chaotic

source at freeze-out.

e The source that is observed in HBT measurements
will be the chaotic freeze-out source, and the HBT
radii will correspond to those of the freeze-out config-

uration.



Why we need to re-examine basic HB'T assumptions

e Because the Hanbury-Brown-Twiss intensity interfer-
ometry is purely a quantum-mechanical phenomenon,
the problem of multiple scattering must be investi-

gated within a quantum-mechanical framework.

e [t is necessary to study the interference of waves using
the probability amplitudes in the multiple scattering
process, instead of the conventional description of in-
coherent collisions in terms of probabilities and cross

sections.

e The Glauber theory of multiple scattering and optical
model have been shown to be a valid description for
the interaction of a pion with the nuclear medium.
They can be applied here to describe the probability
amplitudes for the propagation of the detected parti-

cles.



We find:

e HBT does not measure the freeze-out source distri-

bution

e HBT measures an earlier pre-freeze-out density dis-

tribution — the elastic-scattering configuration

The elastic-scattering configuration of a source distribu-
tion is the configuration in which source particles begins

to scatter predominantly elastically.

The elastic-scattering configuration occurs before, but

close to, the state of chemical freeze-out.
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.In a central RHIC collision, thousands of particle

(mostly pions) are produced

. Many initial collisions are inelastic ‘chemical reac-
tions’ with a change of particle masses and flavors

. The average kinetic energies (or the temperature) of
particles subsequently decreases

. Below a certain average kinetic energy, inelastic col-
lisions stops and the system reaches the state of
‘chemical freeze-out’

. Subsequent collisions are elastic leading to a change
of particle momentum distributions and the state of
‘thermal freeze-out’

. Particles are subject to collective longitudinal and

transverse expansions



Glauber Theory of Multiple Scattering

Consider the propagation of a particle with momentum

k along the z-direction through a slab of medium located

at z > 0
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According to Glauber theory, the phase of the wave func-
tion is the sum of the scattering phases of all its binary
collisions. The wave function for propagation of the inci-

dent particle from 0 to the point (bz) is

Y(0 — bz) = ¢¥(bz) = exp{ikz +1 NZS; x;i(b—b,)}
= exp{ikz +1i ¢(bz)}



What is the Phase Shift Function x (b — b;)?

The phase shift function x;(b — b;) can be obtained from two-
body scattering data. It is related to the two-body profile function
['j(b—b;) by

exp{ixj(b - b])} =1- F](b - b])

The profile function can be expressed in terms of the two-body elastic

scattering amplitude f(q),
fl@) = [ ¢9Or(b)db.

Therefore, the imaginary part of the forward elastic scattering am-
plitude is
k
7z 0) =— [ ReI'(b)db.
m f(0) = o [ Re I'(b)

From the optical theorem, we have the relation between Re T'(b)

and the two-body total cross section oy,

2 [ Re T'(b)db = oy.



Single-Particle Wave Function 1 (bz)

The wave function

Y(bz) = explikz +1 ¢(bz)}
6(b:) =3 (b b))

J

from the multiple scattering theory contains a wealth of

relevant mformation.

e [t depends on the coordinates of all the particles with

which the incident particles has interacted.

e [t treats correctly the case of no scattering and mul-
tiple scattering, even up to the extreme case of N(z)

collisions 1n succession.

e It makes no difference whether the medium particles

are dense in close proximity or dilute in far separation.

e Information on the density of medium particles can
be provided when one integrates out the distribution

of the medium particle coordinates.



The Wigner function

We introduce the Wigner function w(gz)

w(gz) = [ dse® (p(b+2,2)0" (b~ 2, 2) )modium

We can carry out the integration over s. The Wigner function can

be decomposed into multiple scattering components:
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Multiple Scattering Theory and Classical Transport

The transport equation for w(qz) can be obtained by

differentiating w(bz) with respect to z. We find

dw(gz) _ —now(qz) + n/cng(qj‘)Fw(q —q;,2).

0z

This is the same Boltzmann equation as one obtains in

the classical case without using of the wave function.

e The multiple scattering theory leads naturally to the

classical diffractive transport theory

e [t retains the particle wave function

e [t is therefore appropriate to use the multiple scatter-
ing wave function to investigate the effects of multi-

ple scattering in interference phenomena such as the

HBT.



Multiple Scattering and Energy Loss

A particle loses its energy as it collides with medium par-
ticles. The energy loss can be treated in the multiple
scattering theory by including the next-to-leading order
term (Blankenbecler & Drell PRD53, 6265 (1996)):

Y(bz) = exp{ikz + 1¢(bz)}



Application of Glauber Theory to HBT

source

Probability amplitude for particle with momentum k; to

go from 1 to the detector x4

w(élil — xdl) = GXp{’l:kl . (Zl?dl — 561) + iqb(,’l?fl — 331)}

¢(x 1 — x1) can come from Glauber multiple collision

theory:

d(zs1 — 21) = ¢ (2p — 21) + ¢V (2 p1 — 71)
N(zp1—2)
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HBT with Multiple Elastic Scattering

source

Jreeze-out surface
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Phases cancel in the phase difference in HBT correlation:
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The HBT correlations will not be affected.



Effects of Multiple Scattering on HBT
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P(ky, kg) = P(k1)P(k2)

0] el ae=2 T 60) () Ay ) A(ks, w)‘z.

The effective source density is given by
e 2 Im ¢@) p(2) Ak, ) A(ko, x)
/P (k) P(ks) |

peff(x; kla kZ) —

At lower energies, the interaction of the pion with the

medium can be described by an optical model

V(kx— kxy)=A(kx) oi40(x) gik-(zg—2)+i Bz j—7)
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Conclusion

By applying the Glauber theory of multiple scattering
to HBT, we find that multiple scattering leads to an
effective density distribution that depends on a
pre-freeze-out source distribution, the “elastic scattering

configuration” of the source distribution.



